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Figure 2. First and second order matrices for the helical snake at γ = 27 (injection)

Figure 3. First and second order matrices for the helical snake at γ = 268 (storage)
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The first row  in Table 1 gives the linear coupling for 2 snakes in the ring, represented by analyti-
cal matrices as described in section 3.2. In the second and third row  the matrices for the 2 snakes
are obtained numerically (see section 3.1). The results in the second row refer to the configuration
when the full numerical linear matrix (see Figure 1) is used, while the last result are for a numeri-
cal matrix where the focusing terms Σ21 and Σ43 have been set to zero and the diagonal terms to
Σii to 1, to verify that in absence of focusing terms the trace results coincide with the difference
between the cosines of the nominal tunes.
The results concerning the analytical model have been independently verified [6] by inserting the
snake matrices in the RHIC lattice and using the code SYNCH to calculate ∆Qmin. The results in
this case is ∆Qmin=0.00935, in very good agreement with the results obtained with the 1-turn
matrix.
The linear coupling obtained by the 2 models (∆Qmin ~ 10-2) at injection is well within the range
of capability of the RHIC decoupling system. At storage, the coupling introduced by the snakes is
negligible (∆Qmin ~ 10-4).
There is about a factor 2 between the coupling effect predicted by the numerical and analytical
matrices: the 2 models use different approximations for the fields and equations of motions, so a
perfect agreement was not expected.
Work is in progress to evaluate the higher order effects of the snake on the beam dynamics, and
the non-linear behavior will have to be compared to the linear effects.
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The  rotation matrix between the location 1 and 2 is (2 to 1 is obtained by swapping indexes):

where

As described in more detail in [1], it is possible to derive from the 1-turn matrix T the linear cou-
pling effect, quantified by the distance of minimum approach of tunes (∆Qmin) in the following

way. By writing the 4x4 matrix T as , one can demonstrate that:

where H = m + n+ and A and B are the eigenmatrices and QA and QB the eigentunes of the cou-
pled motion. From detH one can derive ∆Qmin.

5. Results and discussion
The results for the linear model at injection obtained with the numerical matrices and the analyti-
cal matrices for the snake are summarized in Table 1.

Table 1:  Coupling for the helical snake (linear models)

configuration |1/2Tr(M-N)| |cos(2πQx)-cos(2πQy)| ∆Qmin

2 snakes / analytical 5.893 10-2 5.765 10-2 0.00926

2 snakes / numerical 8.876 10-2 5.765 10-2 0.01809

2 snakes / numerical
no focusing terms
diagonal terms = 1

5.765 10-2 5.765 10-2 0.02371
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where ,  where  and .

For the snake design at the injection γ of 27 the matrices for the 1.458 T and the 4 T modules are
respectively :

The matrix for the full snake can be obtained by matrix multiplication of the modules M1 and M4,
 separated by a drift matrix D of 0.32m, the design distance between modules, i.e. :

The resulting snake matrix Σ at γ = 27 is:

4. The one turn map
The model to obtain a linear representation of the ring (1-turn map) is simply to place the 2 snakes
in their lattice position, project the snakes and connect the 2 ring locations by a phase space rota-
tion: the 1 turn matrix T is obtained by multiplication of the matrices representing these opera-
tions (See Figure 4).

Figure 4. Model for the 1-turn map.
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3. The snake matrix

3.1 Numerical approach

The SNIG program [2], which is being used for snake design and optimization, allows the compu-
tation of particle trajectories in the snake by integrating the equations of motion in the magnetic
field of the snake. The helical field is expressed analytically as a continuous superposition of wig-
glers, an expression which has the right symmetry and satisfies Maxwell equations. A third order
expansion of this field proved accurate enough for trajectory calculations. For a detailed discus-
sion of the field and equations of motion in the helical snake see [5]. The SNIG program has been
extended to allow the derivation of first and second order transfer matrices from the integration of
particle trajectories [4]. A distribution of particles is randomly generated in an ellipse, whose
parameters are defined by user-specified twiss functions and emittances at the entrance of the
snake. The initial conditions, typically 50 to 100, are tracked through the snake with SNIG and a
polynomial fit of the dependence of final from initial conditions is performed. That allows one to
derive first and second order transverse matrices, as well as the statistical errors associated. A typ-
ical result for the present snake design at injection (γ=27) is listed in Figure 2.
The dependence of the numerical matrix on input parameters, as number of particles tracked,
shape and size of the initial ellipse, random seed, offset of the ellipse center (closed orbit at the
snake entrance), and energy has been systematically checked. The fit results proved to be insensi-
tive (variation of matrix terms < 1%) to most of the parameters varied, with the exception of the
ellipse offset and energy. However, in order to have appreciable effects on the matrix (>>1%) the
ellipse center offset has to be ~3cm, an unrealistic value for the closed orbit at the entrance of the
snake in a corrected machine. The matrix obviously changes with energy. Results for the design
snake at storage energy (γ=268) are listed in Figure 3. At higher γ the diagonal terms are ~1, the
length ~12m and focusing and coupling terms of the linear matrix as expected decrease with
energy.

3.2 Analytical approach

It is possible to derive a first order transfer matrix for 1 module of the helical snake by expanding
around the reference helical orbit, approximating the helical dipole field and simplifying the equa-
tions of motion by averaging sin-like and cosine-like terms. For a detailed discussion of the deri-
vation see [3]. I will only repeat here the final form of the matrix, for a helical field where L = λ =
2π/k, with λ and k respectively wave length and wave number of the helix.

δL( )cos 0 δL( )sin– 0
0 δL( )cos 0 δL( )sin–
δL( )sin 0 δL( )cos 0
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λoL 
 cos
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 sin
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------------------------- 0 0

λo λoL 
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 cos 0 0
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1. Introduction
The following note describes a simple way to calculate the linear coupling effect of helical snakes
in RHIC by calculating the minimum tune separation (∆Qmin) from the one-turn linear map[1].
The latter is derived by using a strictly linear model: the snakes are represented by  matrices and
the RHIC lattice by the transfer matrices between the location of the snakes. The snake matrix
obtained by numerical integration of an ensemble of trajectories [2] is compared to the matrix
obtained analytically by simplification of the equations of motions in the snake [3] and the cou-
pling in the 2 cases is calculated. The linear coupling generated in RHIC by the Siberian snakes
seems well within the capability of the decoupling correction system at injection, and negligible
at storage energy. A more detailed analysis of the effect of snakes on the machine where higher
order effects are taken into consideration is in progress.

2. The present snake design
The present nominal design for the RHIC helical snake [4] consists of 4 modules of 2.4 m length,
where the helix wavelength equals the module length (see scheme in Figure 1). The Bo field for
the outer modules is 1.458 T and for the inner ones 4 T, a configuration that minimizes the closed
orbit excursions in the snake (∆y < 27 mm at the injection γ of 27).
Two snakes will be installed in each RHIC ring at locations separated in betatron phase by πQx
and πQy (The nominal tunes for RHIC are Qx = 28.19 and Qy = 29.18). A drift is reserved for
snake installation in the lattice database RHIC92.0.4 next to the Q7 quadrupoles in the 10 o’clock
and 4 o’clock interaction regions.

Figure 1. Schematic view of the RHIC helical snake.

module 1 module 2 module 3 module 4

Bo= 1.458 T Bo= 4 T Bo=4 T Bo = 1.458 T

L = 2.4 m L = 2.4 m L = 2.4 m L = 2.4 m

overall snake  slot length  11.368 m

d d d

d = 0.32 m


